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• The Integers and Division.

• Integer Representations.

• Primes.

• Greatest Common Divisors.

• Least Common Multiple. 

Chapter 4: Number Theory
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DEFINITION

Discrete Mathematics

Division (1/15)

(or equivalently, if  
𝑏

𝑎
is an integer)
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DEFINITION

Discrete Mathematics

Division (1/15)

Remark: We can express 𝑎 ∣ 𝑏 using quantifiers as ∃𝑐(𝑎𝑐 = 𝑏), 
where the universe of discourse is the set of integers.
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Example 1

Discrete Mathematics

Division (2/15)
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Example 1 – Solution

Discrete Mathematics

Division (2/15)
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Example 2

Discrete Mathematics

Division (3/15)

A number line indicates which integers are divisible by the 

positive integer 𝑑.

which integers are divisible 
by the positive integer 𝒅.
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Example 3

Discrete Mathematics

Division (4/15)

Let 𝑛 and 𝑑 be positive integers. How many positive integers not 

exceeding 𝑛 are divisible by 𝑑?

The positive integers divisible by 𝑑 are all the integers of the form 

𝑑𝑘, where 𝑘 is a positive integer. Hence, the number of positive 

integers divisible by 𝑑 that do not exceed 𝑛 equals the number of 

integers 𝑘 with 0 < 𝑑𝑘 ≤ 𝑛, or with 0 < 𝑘 ≤ 𝑛/𝑑. Therefore, 

there are 𝒏/𝒅 positive integers not exceeding 𝑛 that are divisible 

by 𝑑.
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THEOREM

Discrete Mathematics

𝐋𝐞𝐭 𝒂, 𝒃, 𝐚𝐧𝐝 𝒄 𝐛𝐞 𝐢𝐧𝐭𝐞𝐠𝐞𝐫𝐬,𝐰𝐡𝐞𝐫𝐞 𝒂 ≠ 𝟎. 𝐓𝐡𝐞𝐧

𝑖 if 𝑎 𝑏 and 𝑎 𝑐, then 𝑎 | 𝑏 + 𝑐

𝑖𝑖 if 𝑎 𝑏, then 𝑎 𝑏𝑐 for all integers 𝑐

𝑖𝑖𝑖 if 𝑎 𝑏 and 𝑏 𝑐, then 𝑎 | 𝑐

𝐀𝐬 𝐚 𝐫𝐞𝐬𝐮𝐥𝐭:

If 𝑎 𝑏 and 𝑎 𝑐, then 𝑎 | 𝒎𝑏 + 𝒏𝑐 whenever

𝒎 and 𝒏 are integers

Division (5/15)
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Examples

Discrete Mathematics

1)Does 2 divdes 4?

2)Does 2 divdes 8?

3)2 divdes 4 + 8 ?

4)Does 2 divdes 4?

5)Does 2 divdes 4 ∗ 5?

6)Does 2 divdes 4 ∗ 4?

7)Does 2 divdes 4?

8)Does 4 divdes 16?

9)Does 2 divdes 16?

Division (6/15)
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The Division Algorithm

Discrete Mathematics

Let 𝒂 be an integer and 𝒅 a positive integer. Then

𝑎

𝑑
= 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡 𝑞 , 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑟

𝑤𝑖𝑡ℎ , 0 ≤ 𝑟 < 𝑑

𝑎 = 𝑑𝑞 + 𝑟

𝑞 = 𝑎 𝐝𝐢𝐯 𝑑

𝑟 = 𝑎 𝐦𝐨𝐝 𝑑

The remainder 𝒓 cannot be negative!

Division (7/15)

divisor

dividend

𝒒 =
𝒂

𝒅

𝒓 = 𝒂 − 𝒒𝒅
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Example 1

Discrete Mathematics

Division (8/15)
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Example 1 – Solution 

Discrete Mathematics

Division (8/15)

𝑞 = 101/11 = 9.18 = 9,

𝑟 = 101 − 9 11 = 2



14©Ahmed Hagag

Example 1 – Solution 

Discrete Mathematics

Division (8/15)
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Example 2 

Discrete Mathematics

Division (9/15)



16©Ahmed Hagag

Example 2 – Solution 

Discrete Mathematics

Division (9/15)

𝑞 = −11/3 = −3.6 = −4,

𝑟 = −11 − 3 −4 = 1
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Example 2 – Solution 

Discrete Mathematics

Division (9/15)



18©Ahmed Hagag

Example 3

Evaluate:

➢ 11𝐦𝐨𝐝 2

➢ −11𝐦𝐨𝐝 2

Discrete Mathematics

Division (10/15)
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Example 3 – Solution 

Evaluate:

➢ 11𝐦𝐨𝐝 2 = 1

➢ −11𝐦𝐨𝐝 2 = 1

Discrete Mathematics

Division (10/15)

𝑞 = 11/2 = 5,
𝑟 = 11 − 2 5 = 1

𝑞 = −11/2 = −6,
𝑟 = −11 − 2 −6 = 1
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Note:

If 𝒂 | 𝒃 , then −𝒂 | 𝒃

Example:

2 | 8

Then

−2 | 8

Discrete Mathematics

Division (11/15)
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Example 4

Show that if 𝒂 is an integer, then 𝟏 | 𝒂

➢ 𝑞 = 𝑎/1 = 𝑎

➢ 𝑎 1 = 𝑎, and 𝑟 = 0, so  1 | 𝑎

Discrete Mathematics

Division (12/15)
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Example 5

Show that if 𝒂 is an integer other than 0, then 𝒂 | 𝟎

➢ 𝑞 = 0/𝑎 = 0

➢ 0 𝑎 = 0, and 𝑟 = 0, so  𝑎 | 0

Discrete Mathematics

Division (13/15)
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Example 6

Show that if 𝒂 is an integer other than 0, then 𝒂 | 𝒂

➢ 𝑞 = 𝑎/𝑎 = 1

➢ 1 𝑎 = 𝑎, and 𝑟 = 0, so  𝑎 | 𝑎

Discrete Mathematics

Division (14/15)
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Example 7

If 𝒂 | 𝟏, then 𝒂 = ⋯

➢ 𝑎 = ±1

➢ 𝑞 = 1/𝑎 = 1/±1 = ±1

➢ ±1 1 = ±1, and 𝑟 = 0, so  𝑎 | 1 if  𝑎 = ±1

Discrete Mathematics

Division (15/15)
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Modular Arithmetic (1/12)

Introduction (1/3)

In some situations, we care only about the remainder of an integer 

when it is divided by some specified positive integer. For instance, 

when we ask what time it will be (on a 24-hour clock) 50 hours 

from now, we care only about the remainder when 50 plus the 

current hour is divided by 24. Because we are often interested only 

in remainders, we have special notations for them.

Example:

What time does a 24-hour clock read 100 hours after it reads 2:00?

Answer: (100 + 2) mod 24 = 6 ,   

Time is 6: 00
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Modular Arithmetic (1/12)

Introduction (2/3)

We have already introduced the notation 𝑎 mod 𝑚 to represent the 

remainder when an integer 𝑎 is divided by the positive integer 𝑚. 

We now introduce a different, but related, notation that indicates 

that two integers have the same remainder when they are 

divided by the positive integer 𝑚.
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Modular Arithmetic (1/12)

Introduction (3/3)

The great German mathematician Karl Friedrich 

Gauss developed the concept of congruences at 

the end of the eighteenth century. The notion of 

congruences has played an important role in the 

development of number theory.
Karl Friedrich Gauss
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DEFINITION

Discrete Mathematics

𝑎, 𝑏 are integers and 𝑚 is a positive integer

𝑎 is 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 to 𝑏 𝑚𝑜𝑑𝑢𝑙𝑜 𝑚

𝑎 ≡ 𝑏 𝐦𝐨𝐝 𝑚 ⟺ 𝑚 divides 𝑎 − 𝑏

𝑎 ≡ 𝑏 𝐦𝐨𝐝 𝑚 ⟺ 𝑎 𝐦𝐨𝐝 𝑚 = 𝑏 𝐦𝐨𝐝 𝑚

𝑎 ≡ 𝑏 𝐦𝐨𝐝 𝑚 ⟺ there is an integer 𝑘 such that 𝑎 = 𝑏 + 𝑘𝑚

Modular Arithmetic (2/12)
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Example 1

Discrete Mathematics

Decide whether each of these integers is 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 to 5 𝑚𝑜𝑑𝑢𝑙𝑜 6.

➢ 17

➢ 24

Modular Arithmetic (3/12)
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Example 1 – Solution

Discrete Mathematics

Decide whether each of these integers is 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 to 5 𝑚𝑜𝑑𝑢𝑙𝑜 6.

➢ 17

17 − 5 = 12,
12

6
= 2, 𝑡ℎ𝑒𝑛 17 ≡ 5(mod 6)

➢ 24

24 − 5 = 19,
19

6
= 3.2, 𝑡ℎ𝑒𝑛 24 ≢ 5(mod 6)

Modular Arithmetic (3/12)
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Example 2

Discrete Mathematics

List 𝑓𝑖𝑣𝑒 integers that are 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 to 2 𝑚𝑜𝑑𝑢𝑙𝑜 4.

𝑎 ≡ 𝑏 𝐦𝐨𝐝 𝑚 ⟺ there is an integer 𝑘 such that 𝑎 = 𝑏 + 𝑘𝑚

Modular Arithmetic (4/12)



32©Ahmed Hagag

Example 2 – Solution

Discrete Mathematics

List 𝑓𝑖𝑣𝑒 integers that are 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 to 2 𝑚𝑜𝑑𝑢𝑙𝑜 4.

𝑎 ≡ 𝑏 𝐦𝐨𝐝 𝑚 ⟺ there is an integer 𝑘 such that 𝑎 = 𝑏 + 𝑘𝑚

𝑎 = 2 + 𝑘 ∗ 4, 𝑘 is integer

➢ 𝑘 = 1 → 𝑎 = 6
➢ 𝑘 = 2 → 𝑎 = 10
➢ 𝑘 = 3 → 𝑎 = 14
➢ 𝑘 = 4 → 𝑎 = 18
➢ 𝑘 = 5 → 𝑎 = 22

Modular Arithmetic (4/12)
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Example 2 – Solution

Discrete Mathematics

List 𝑓𝑖𝑣𝑒 integers that are 𝑐𝑜𝑛𝑔𝑟𝑢𝑒𝑛𝑡 to 2 𝑚𝑜𝑑𝑢𝑙𝑜 4.

𝑎 ≡ 𝑏 𝐦𝐨𝐝 𝑚 ⟺ there is an integer 𝑘 such that 𝑎 = 𝑏 + 𝑘𝑚

𝑎 = 2 + 𝑘 ∗ 4, 𝑘 is integer

➢ 𝑘 = 1 → 𝑎 = 6
➢ 𝑘 = 2 → 𝑎 = 10
➢ 𝑘 = 3 → 𝑎 = 14
➢ 𝑘 = 4 → 𝑎 = 18
➢ 𝑘 = 5 → 𝑎 = 22

Modular Arithmetic (4/12)

The set of all integers congruent to an integer 
𝑎 modulo 𝑚 is called the congruence class
of 𝑎 modulo 𝑚.
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Definition

Ex: The integer 7 is prime because its only positive factors 

are 1 and 7, whereas the integer 9 is composite because it is 

divisible by 3.

Discrete Mathematics

Primes (1/9)
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Remark

The integer 1 is not prime, because it has only one positive 

factor. Note also that an integer 𝑛 is composite if and only if 

there exists an integer 𝑎 such that 𝑎 ∣ 𝑛 and 1 < 𝑎 < 𝑛

Discrete Mathematics

Primes (2/9)
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THEOREM 1

THE FUNDAMENTAL THEOREM OF ARITHMETIC 

Every integer greater than 1 can be written uniquely as a 

prime or as the product of two or more primes.

Discrete Mathematics

Primes (3/9)
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THEOREM 2

Example 1: The integer 100 is prime or not ?

The prime numbers ≤ 100 are 2, 3, 5, and 7

2 100, and 5 100

So, 𝟏𝟎𝟎 is not a prime integer. 𝟏𝟎𝟎 is a composite integer.

Discrete Mathematics

Primes (4/9)
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Example 2 

The integer 101 is prime or not ?

The prime numbers ≤ 101 are 2, 3, 5, and 7

2 ∤ 101, 3 ∤ 101 , 5 ∤ 101, and 7 ∤ 101

So, 𝟏𝟎𝟏 is a prime integer.

Discrete Mathematics

Primes (5/9)
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Example 3 

Find the prime factorization of 100?

The prime numbers ≤ 100 are 2, 3, 5, and 7

100 = 2 ∙ 2 ∙ 5 ∙ 5

= 22 ∙ 52

Discrete Mathematics

Primes (6/9)
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Example 4 

Find the prime factorization of 1001?

The prime numbers ≤ 1001 are 2, 3, 5, 7, 11,13,17,19, 23 …

143 are 2, 3, 5, 7, 11

13 are 2, 3

1001
143
13
1

7
11
13

1001 = 7 ∙ 11 ∙ 13

Discrete Mathematics

Primes (7/9)
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The Sieve of Eratosthenes (1/6)

In mathematics, the sieve of Eratosthenes 

is an ancient algorithm for finding all 

prime numbers up to any given limit.

Discrete Mathematics

Primes (8/9)

Eratosthenes
Greek 
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The Sieve of Eratosthenes (2/6)

Is used to find all primes not exceeding a specified positive 

integer. For instance, the following procedure is used to find the 

primes not exceeding 100. Note that composite integers not 

exceeding 100 must have a prime factor not exceeding 10 = 100.

The prime numbers ≤ 100 are 2, 3, 5, and 7

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (3/6)

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (3/6)

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (4/6)

Discrete Mathematics

Primes (8/9)



46©Ahmed Hagag

The Sieve of Eratosthenes (4/6)

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (5/6)

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (5/6)

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (6/6)

Discrete Mathematics

Primes (8/9)
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The Sieve of Eratosthenes (6/6)

Discrete Mathematics

Primes (8/9)
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Primes (9/9)
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DEFINITION “𝐠𝐜𝐝” (1/2) 

Discrete Mathematics

Greatest Common Divisors (1/5)
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DEFINITION “𝐠𝐜𝐝” (2/2) 

For 12 and 18, what is the greatest common factor?

We have four common factors {𝟏, 𝟐, 𝟑, 𝟔}
The greatest one is 𝟔 .

Discrete Mathematics

Greatest Common Divisors (1/5)
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Example 1

Discrete Mathematics

Greatest Common Divisors (2/5)
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Example 1

Discrete Mathematics

24
12
6
3
1

2
2
2
3

= 23 ∙ 3

24 are 2, 3 36 are 2, 3, 5

36
18
9
3
1

2
2
3
3

= 22 ∙ 32

gcd 24,36 = 22 ∙ 3 = 12

Greatest Common Divisors (2/5)
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Greatest Common Divisors (3/5)

Example 2

Discrete Mathematics

120
60
30
15
5
1

2
2
2
3

5

= 23 ∙ 3 ∙ 5

120 are 2, 3,5,7 500 are 2, 3, 5,7,11,13,17,19

500
250
125
25
5
1

2
2
5
5

5

= 22 ∙ 53

gcd 120, 500 = 22 ∙ 30 ∙ 5 = 20

What is the gcd 120, 500 ?
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DEFINITION 1

Discrete Mathematics

Is 17 and 22 are relatively prime? 

Greatest Common Divisors (4/5)
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DEFINITION 1

Discrete Mathematics

Is 17 and 22 are relatively prime? (Yes)

gcd 17, 22 = 1

Greatest Common Divisors (4/5)
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DEFINITION 2

The integers 𝑎1, 𝑎2, … , 𝑎𝑛 are pairwise relatively prime if 

gcd(𝑎𝑖 , 𝑎𝑗) = 1 whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Discrete Mathematics

Greatest Common Divisors (5/5)
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DEFINITION 2

The integers 𝑎1, 𝑎2, … , 𝑎𝑛 are pairwise relatively prime if 

gcd(𝑎𝑖 , 𝑎𝑗) = 1 whenever 1 ≤ 𝑖 < 𝑗 ≤ 𝑛.

Example:

Determine whether the integers 10, 17, and 21 are pairwise 

relatively prime and whether the integers 10, 19, and 24 are 

pairwise relatively prime.

Solution:

Because gcd 10, 17 = 1, gcd(10, 21) = 1, and gcd(17, 21) = 1, 

we conclude that 10, 17, and 21 are pairwise relatively prime.

Because gcd(10, 24) = 2 > 1, we see that 10, 19, and 24 are not 

pairwise relatively prime.

Discrete Mathematics

Greatest Common Divisors (5/5)
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DEFINITION “𝐥𝐜𝐦” 

Discrete Mathematics

Least Common Multiple (1/5)
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Example 1

Discrete Mathematics

24
12
6
3
1

2
2
2
3

= 23 ∙ 3

24 are 2, 3 36 are 2, 3, 5

36
18
9
3
1

2
2
3
3

= 22 ∙ 32

lcm 24,36 = 23 ∙ 32 = 72

What is the lcm 24, 36 ?

Least Common Multiple (2/5)
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Example 2

Discrete Mathematics

120
60
30
15
5
1

2
2
2
3

5

= 23 ∙ 3 ∙ 5

120 are 2, 3,5,7 500 are 2, 3, 5,7,11,13,17,19

500
250
125
25
5
1

2
2
5
5

5

= 22 ∙ 53

lcm 120, 500 = 23 ∙ 31 ∙ 53 = 3000

What is the lcm 120, 500 ?

Least Common Multiple (3/5)
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THEOREM

Let 𝑎 and 𝑏 be positive integers. Then

𝑎𝑏 = gcd(𝑎, 𝑏) ⋅ lcm(𝑎, 𝑏)

Discrete Mathematics

Least Common Multiple (4/5)
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Example 3

Discrete Mathematics

120
60
30
15
5
1

2
2
2
3

5

= 23 ∙ 3 ∙ 5

120 are 2, 3,5,7 500 are 2, 3, 5,7,11,13,17,19

500
250
125
25
5
1

2
2
5
5

5

= 22 ∙ 53

lcm 120, 500 = 23 ∙ 31 ∙ 53 = 3000

gcd 120, 500 =
120 ∗ 500

3000
= 20

What are the 𝐠𝐜𝐝 𝟏𝟐𝟎, 𝟓𝟎𝟎 and 𝐥𝐜𝐦 𝟏𝟐𝟎, 𝟓𝟎𝟎 ?

Least Common Multiple (5/5)
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1. Hashing Functions

2. Pseudorandom Numbers

3. Cryptography

…

Discrete Mathematics

Applications (1/4)
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1. Hashing Functions

Discrete Mathematics

Applications (2/4)
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2. Pseudorandom Numbers

Discrete Mathematics

linear congruential method

Applications (3/4)
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3. Cryptography

Discrete Mathematics

DecryptionEncryption 𝑘 is called a key

Classical Cryptography

Applications (4/4)

𝑚 is the number 

of elements in the 

language used.
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Video Lectures

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz

Discrete Mathematics

All Lectures: 

Lectures #5:  

https://www.youtube.com/watch?v=1AZzb2FAVc4&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=34

https://www.youtube.com/watch?v=Q-zLpSW3oSU&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=31

https://www.youtube.com/watch?v=3IXniblNWdo&list=PLxIvc-

MGOs6gZlMVYOOEtUHJmfUquCjwz&index=32
Up to time 00:21:34

https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz
https://www.youtube.com/watch?v=1AZzb2FAVc4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=34
https://www.youtube.com/watch?v=1AZzb2FAVc4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=34
https://www.youtube.com/watch?v=Q-zLpSW3oSU&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=31
https://www.youtube.com/watch?v=Q-zLpSW3oSU&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=31
https://www.youtube.com/watch?v=3IXniblNWdo&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=32
https://www.youtube.com/watch?v=3IXniblNWdo&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=32


Dr. Ahmed Hagag
ahagag@fci.bu.edu.eg
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