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& Chapter 4: Number Theory
— Lt
* The Integers and Division.

* Integer Representations.

* Primes.

» Greatest Common Divisors.

« Least Common Multiple.
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Division (1/15)
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DEFINITION

If a and b are integers with a # 0,

we say that a divides b if there is an integer ¢ such that
b = ac. (or equivalently, if Z IS an integer)

we say that a is a factor of b and that b 1s a multiple of a.

notation a | b denotes that a divides b.

We write a /b when a does not divide b.
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DEFINITION

Remark: We can express a | b using quantifiers as 3c(ac = b),
where the universe of discourse is the set of integers.
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Example 1

Determine whether 3 | 7 and whether 3 | 12.
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@ Division (2/15)
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Example 1 — Solution

Determine whether 3 | 7 and whether 3 | 12.

It follows that 3 f7, because 7/3 1s not an integer.

3| 12 because 12/3 = 4.
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Example 2

A number line indicates which integers are divisible by the
positive integer d.

which integers are divisible
by the positive integer d.

| | | | | | |
- | | | | | ™

—3d —2d —d 0 d 2d 3d

©Ahmed Hagag Discrete Mathematics Vi




Division (4/15)
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Example 3

Let n and d be positive integers. How many positive integers not
exceeding n are divisible by d?

The positive integers divisible by d are all the integers of the form
dk, where k Is a positive integer. Hence, the number of positive
Integers divisible by d that do not exceed n equals the number of
Integers k with 0 < dk <n, or with 0 < k <n/d. Therefore,
there are |[n/d] positive integers not exceeding n that are divisible

by d.
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THEOREM

Let a, b,and c be integers, where a # 0. Then
(i)ifa|b and a|c,then a| (b + c)
(ii) ifa | b,then a | bc for all integers c

(iii)ifa|b and b|c,then a|c

As a result:

Ifa|b and a|c,then a| mb + nc whenever
m and n are integers
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Examples

1) Does 2 divdes 4?
2) Does 2 divdes 87
3) 2 divdes (4 + 8)?

4) Does 2 divdes 47
5) Does 2 divdes 4 * 57
6) Does 2 divdes 4 * 47

7) Does 2 divdes 47
8) Does 4 divdes 167
9) Does 2 divdes 167
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The Division Algorithm

Let a be an integer and d a positive integer. Then

dividend — g
7= quotient (q)| , remainder (r)
divisor
with , 0<r<d
a=dq+r
The remainder r cannot be negative!
e | a
q =adivd q= {H‘

r=a-—qd
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Example 1

What are the quotient and remainder when 101 is divided by 11?
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Example 1 — Solution

What are the quotient and remainder when 101 is divided by 11?

qg =1101/11] =19.18] =9,

r =101 —(9)(11) = 2

©Ahmed Hagag Discrete Mathematics 13




Division (8/15)

(P4
4 /s
oY

o<y

Example 1 — Solution

What are the quotient and remainder when 101 is divided by 11?

Solution: We have
10l =11-9 4 2.

Hence, the quotient when 101 is divided by 11 is 9 =101 div 11,
and the remainder is 2 = 101 mod 11.
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Example 2

What are the quotient and remainder when —11 is divided by 3?
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Example 2 — Solution

What are the quotient and remainder when —11 is divided by 3?

q=1-11/3] =|-3.6] = —4,

r=-11-(3)(-4) =1
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Example 2 — Solution

What are the quotient and remainder when —11 is divided by 3?

Solution: We have
—11 =3(-4)+ 1.

Hence, the quotient when —11 is divided by 3 is —4 = —11 div 3,

and the remainder is 1 = —11 mod 3.
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Example 3
Evaluate:

> 11 mod 2

> —11 mod 2
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Division (10/15)

q =[11/2] =5,
r=11- (D(QD
> 11mod 2 =1
> —11mod2 =1 —
q =[-11/2| = -6,
L=ﬂ —(2)(=6) =1
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Note:

Ifa|b,then—a|b

Example:
2|8

Then

—218
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Example 4
Show that if a Is an integer, then 1 | a

» qg=|a/1] =a
» (a)(1) =a,andr =0,50 1] a
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Example 5
Show that if a is an integer other than 0, then a | 0

» qg=1|0/a] =0
» (0)(a)=0,andr =0,s0 a |0
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Example 6
Show that If a is an integer other than 0, then a | a

» q=|a/al =1
» (1)(a) =a,andr =0,50 a|a
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Example 7
Ifa|1,thena = -

> a=+1
» qg=|1/a]l =|1/11] = +1
» (+1)(1) =+1,andr =0,s0 a|1 if a =+1
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Introduction (1/3)

In some situations, we care only about the remainder of an integer
when it is divided by some specified positive integer. For instance,
when we ask what time it will be (on a 24-hour clock) 50 hours
from now, we care only about the remainder when 50 plus the
current hour is divided by 24. Because we are often interested only
In remainders, we have special notations for them.

Example:

What time does a 24-hour clock read 100 hours after it reads 2:00?
Answer: (100 + 2) mod 24 = 6,

Time is 6: 00
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Introduction (2/3)

We have already introduced the notation a mod m to represent the
remainder when an integer a is divided by the positive integer m.
We now introduce a different, but related, notation that indicates
that two integers have the same remainder when they are
divided by the positive integer m.
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Introduction (3/3)

The great German mathematician Karl Friedrich
Gauss developed the concept of congruences at
the end of the eighteenth century. The notion of
congruences has played an important role in the
development of number theory.
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DEFINITION

a,b are integers and m 1is a positive integer

a is congruent to b modulo m

a=b(mod m) & m divides a—b
a=b(mod m) © amodm = b mod m

a = b(mod m) < thereisaninteger k suchthat a=»b+ km
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Example 1

Decide whether each of these integers is congruent to 5 modulo 6.

> 17
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Example 1 — Solution

Decide whether each of these integers is congruent to 5 modulo 6.

> 17
12
17 -5 =12, - = 2, then 17 = 5(mod 6)
> 24
19
24 —5 =19, i 3.2, then 24 # 5(mod 6)
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Example 2

List five integers that are congruent to 2 modulo 4.

a = b(mod m) < thereisaninteger k suchthat a =»b + km
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Example 2 — Solution

List five integers that are congruent to 2 modulo 4.

a = b(mod m) < thereisaninteger k suchthat a =»b + km

a=2+k=x4, k is integer
» k=1 » a=

> k=2 > a=10

>» k=3 > a=14

>» k=4 »> a=18

> k=5 > a=22
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Modular Arithmetic (4/12)
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Example 2 — Solution

List five integers that are congruent to 2 modulo 4.

a = b(mod m) < thereisaninteger k suchthat a =»b + km

a=2+k=x4, k is integer

>» k=1 - a=

» k=2 - a=10 The set of all integers congruent to an integer
>» k=3 > a=14 a modulo m is called the congruence class
> k=4 - a=18 of a modulo m.

» k=5 - a=22
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Definition

A positive integer p greater than 1 is called primeif

the only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not prime

is called

composite.

EX: The integer 7 is prime because its only positive factors
are 1 and 7, whereas the integer 9 iIs composite because It Is
divisible by 3.
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Remark

The integer 1 iIs not prime, because it has only one positive
factor. Note also that an integer n is composite if and only if
there exists an integer a suchthata | nand1 <a <n
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THEOREM 1
THE FUNDAMENTAL THEOREM OF ARITHMETIC

Every integer greater than 1 can be written uniquely as a
prime or as the product of two or more primes.
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THEOREM 2

If n 1s a|composite integer,

then n has a prime divisor less than or equal to \/n.

Example 1: The integer 100 is prime or not ?

The prime numbers < +/100 are 2,3,5,and 7
2(100, and 5/100

So, 100 is not a prime integer. 100 is a composite integer.
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Example 2

@

The integer 101 is prime or not ?

The prime numbers < v101 are 2, 3,5,and 7
21101, 34101, 514101, and 714101

So, 101 is a prime integer.
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Example 3

Find the prime factorization of 1007?

The prime numbers < v100 are 2, 3,5,and 7

100 2
50 | 2

25 | 5
\5 5

1 100=2-2-5-5

= 22.5?
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Example 4

Find the prime factorization of 10017

The prime numbers < +1001 are 2,3,5,7,11,13,17,19, 23 ...
V143 are 2,3,5,7,11
v13 are 2,3

1001] 7

143 |11
13 |13

1

1001 =7-11-13
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The Sieve of Eratosthenes (1/6)

In mathematics, the sieve of Eratosthenes
IS an ancient algorithm for finding all
prime numbers up to any given limit.

Eratosthenes
Greek
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The Sieve of Eratosthenes (2/6)

Is used to find all primes not exceeding a specified positive
Integer. For instance, the following procedure is used to find the
primes not exceeding 100. Note that composite integers not

exceeding 100 must have a prime factor not exceeding 10 = +/100.

The prime numbers < V100 are 2,3,5,and 7
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The Sieve of Eratosthenes (3/6)

Integers divisible by 2 other than 2

receive an underline.

1 2 3 4 5 6 7 8 9 10

I 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

31 32 33 34 35 36 37 38 39 40

41 42 43 4 45 46 47 48 49 50

51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70

71 72 73 74 75 76 77 78 79 80

81 82 83 84 85 8 87 88 8 90

91 92 93 94 95 96 97 98 99 100
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The Sieve of Eratosthenes (3/6)

Integers divisible by 2 other than 2

receive an underline.

1 2 3 8 5 8 7 8 9 8
11 8 13 88 15 8 17 8 19 B
21 38 23 B} 25 B 27 B 29 B
31 8 33 8 35 8 37 8 39 N
41 8 43 8 45 8 47 8 9 B
51 3 53 M 55 W57 W59 B
61 @8 63 8 65 @ 67 @ 69 MW
71 8 713 8 75 8 77 8 9 8
g1 M 83 M 385 M 37 M 390 B
91 98 93 ¢ 95 M 97 # 9 1W®
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The Sieve of Eratosthenes (4/6)

Integers divisible by 3 other than 3

receive an underline.

1 2 3% 5% 7 % 9 M
11 8 13 8 15 8 17 88 19 M}
21 % 23 B 25 B 7 B9 B
3% 3 B35 B 7R H N
41 ® 43 8 45 B 47 8 9 N
51 53 #% 055 %57 %50 @
61 % 63 @ 65 4 67 4 9 MW
718 738 758 77 8 9 8
s1 % 83 M 55 B 57 M o590 B
or ® 93 M 95 % 97 B 99 188
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The Sieve of Eratosthenes (4/6)

Integers divisible by 3 other than 3

receive an underline.

1 2 3% 58 7 898 B
11 88 13 8 26 8 17 88 19 M
%R 23 MWW R B9 W
3% %R 35 B R BB
41 R 38 65 8B 47 8 9 N
% N3R5 BEY B B
61 % @ @ o5 4 67 @ @ B
718 738 88 7B 98
8 % 3 M oss B8 Mo B
on ® % MW o5 B 97 B B ¥
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The Sieve of Eratosthenes (5/6)

Integers divisible by 5 other than 5

receive an underline.

1 2 3 8 5% 7T 8% B
11 8 13 3¢ 8 % 17 ¥ 19 RN
% ¥ B RN RN
308 R WS W T 8RR
41 g9 43 g4 65 £ 4T 8 9 8
T EEEEERE N
61 8 a8 & o5 B o7 B ® B
71 8 3 8 8 8 7 8 v 8B
% 8 33 8 35 B 8 B 0 B
o1 ¥ 8 % o5 88 7 8 ¥ 18
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Primes (8/9)
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The Sieve of Eratosthenes (5/6)

Integers divisible by 5 other than 5

receive an underline.

1 2 38 58 7 89 8
11 8 13 3¢ 8 % 17 ¥ 19 RN
% % B R BN R RN
318 RN N NP T 8RR
41 g9 43 g4 65 £ 4T 8 9 8
B EEEEEEE RN
61 8 48 & % B o7 B @ B
71 8 3 8 8 8 7 8 v 8B
% 8 53 8 8 B 8 B 0 B
or % % % 8 8 7 8 B @
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Primes (8/9)
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The Sieve of Eratosthenes (6/6)

Integers divisible by 7 other than 7 receive

an underline; integers in color are prime.

12 3 8 5 8 7 88 8
11 B 13 3% 28 % 17 8 9 B
223323;2!&;292
3508 8B 8 B BT8R
41 48 43 48 #% £ 47 #£ 19
2 RS RS BRE RO R
6l 48 ¢ 4% % % o 8 ®© B
O VAN B BN B/NE BECEEE
% 8 3 B 8 B g B o B
o1 ¥ % N % 6 7 B B 18
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The Sieve of Eratosthenes (6/6)

Primes (8/9)
e

Integers divisible by 7 other than 7 receive

an underline; integers in color are prime.
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Primes (9/9)
G et

2 3 4 5 & 7 a8 g 10 Prime numbers

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 2B 29 30

31 32 33 34 35 36 37 38 39 40

41 42 42 44 45 46 47 48 49 50

2l 52 53 54 55 56 37 58 59 60

61 62 63 64 65 66 67 6GE 69 7O

71 72 T2 T4 75 T8 F7 T8 19 BHO

81 82 83 84 85 & B7 88 89 OO0

91 92 93 94 95 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110

111 112 113 114 115 116 117 118 119 120
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) Greatest Common Divisors (1/5)
e e

DEFINITION “gcd” (1/2)

Let a and b be integers, not both zero.
The largest integer d suchthatd | a and d | b is called

the greatest common divisor of a and b.
is denoted by gcd(a, b).

. by b
a=plpy-.-p, b=plpy---pb,

ng(a, b) — pll'l'lin(al, bl)plz'ﬂin(az, bZ) L. p:]in(am bn)

’
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@) Greatest Common Divisors (1/5)
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DEFINITION “gcd” (2/2)
For 12 and 18, what is the greatest common factor?

We have four common factors {1, 2, 3, 6}
The greatest one is {6}.
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Greatest Common Divisors (2/5)
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Example 1

What is the greatest common divisor of 24 and 36?

Solution: The positive common divisors of 24 and 36
are 1, 2, 3, 4, 6, and 12. Hence,
gcd(24, 36) = 12.
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) Greatest Common Divisors (2/5)
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Example 1

What is the greatest common divisor of 24 and 36?

V24 are 2, are <, o,

24 2,3 V36 2,3,5
24 2\ 36 2\
12| 2 18| 2
6 |2 =23.3 9 (3 — 22,32

3 3
\" 1/ \" 1/
gcd(24,36) = 2%2-3 =12
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Greatest Common Divisors (3/5)
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Example 2
What is the gcd(120,500) ?

V120 are 2,3,5,7 v500are 2, 3,57,11,13,17,19

120 2\ 500 2\

60 |2 25012

30 |2 12515

15 |3 [=2%-3:5 25 | | =2%-53
5 5

? 5
\ \ 1
gcd(120,500) = 2%-3Y.5 =120
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@) Greatest Common Divisors (4/5)
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DEFINITION 1

The integers a and b are|relatively prime

if their|greatest common divisor i1s 1.

Is 17 and 22 are relatively prime?
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Greatest Common Divisors (4/5)
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DEFINITION 1

The integers a and b are|relatively prime

if their|greatest common divisor i1s 1.

Is 17 and 22 are relatively prime? (Yes)

ocd(17,22) =1

©Ahmed Hagag Discrete Mathematics
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DEFINITION 2

The Integers aq,a,,...,a, are pairwise relatively prime if
gcd(a;, a;) = 1 whenever1 <i <j <n.
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Greatest Common Divisors (5/5)
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DEFINITION 2

The Integers aq,a,,...,a, are pairwise relatively prime if
gcd(a;, a;) = 1 whenever1 <i <j <n.

Example:

Determine whether the integers 10, 17, and 21 are pairwise
relatively prime and whether the integers 10, 19, and 24 are
pairwise relatively prime.

Solution:

Because gcd(10,17) = 1, gcd(10,21) = 1, and gecd(17,21) =1,
we conclude that 10, 17, and 21 are pairwise relatively prime.
Because gcd(10,24) = 2 > 1, we see that 10, 19, and 24 are not
pairwise relatively prime.
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) east Common Multiple (1/5)
e e

DEFINITION “lcm”

The least common multiple of the positive integers a and b

is the smallest positive integer that
is divisible by both a and b.

The least common multiple of a and b is denoted by Icm(a, b).

max(a;, b;) _max(az, b) _ max(a,, b,)

lecm(a, b) = p, D5 . pn
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L_east Common Multiple (2/5)
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Example 1
What is thelem(24, 36) ?

V24 are 2, 3 Vv36are?2 3,5
24 2\ 36 2\
121 2 18] 2
6 |2 =23.3 9 (3 — 22,32

3 3
\" |/ \" |/
Icm(24,36) = 23 .32 = 72
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Example 2
What is the lcem(120,500) ?

V120 are 2,3,5,7 v500are 2, 3,57,11,13,17,19
120 2\ 500 2\

60 |2 25012

30 |2 12515

15 |3 |=2%-3-5 25 |5 | =2%-5°
5 |t 5
\ ] Sy

Icm(120,500) = 23-31.53 =3000
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THEOREM

Let a and b be positive integers. Then

ab = gcd(a, b) - lcm(a, b)
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_east Common Multiple (5/5)
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Example 3
What are the gcd(120,500) and Icm(120,500) ?
v120 are 2, 3,5,7 v500 are 2,3,5,7,11,13,17,19
120 2 50012
60 2\ 250 2\
30 |2 12515
15 |3 |=2%-3-5 25 |5 | =2%-5°
1 1
\ 1) \

lcm(120,500) = 23 - 31 .53 = 3000

d(120,500) = 120500 _
5¢ ’ ~ 73000
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Applications (1/4)
ey

1. Hashing Functions
2. Pseudorandom Numbers
3. Cryptography
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Applications (2/4)
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1. Hashing Functions
h(k) = k mod m

Find the memory locations assigned by the hashing function #(k) = k mod 111 to the records
of customers with Social Security numbers 064212848 and 037149212.

Solution: The record of the customer with Social Security number 064212848 is assigned to
memory location 14, because

h(064212848) = 064212848 mod 111 = 14.

Similarly, because
h(037149212) = 037149212 mod 111 = 65,

the record of the customer with Social Security number 037149212 is assigned to memory
location 635. <
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Applications (3/4)
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2. Pseudorandom Numbers

linear congruential method Xpy1 = (axn + C) mod m.

modulus m = 9, multiplier a = 7, increment ¢ = 4, and seed x, = 3.

x1=Txg+4mod9=7-3+4mod9=25mod 9 =7,
X=Tx;+4mod9=7-74+4mod 9 =53mod9 =38,
xX3=Tx,+4mod9=7-8+4mod 9 =60mod9 = 6,
Xy =Tx3+4mod9=7-6+4mod9 =46 mod 9 = 1,
X5 =Tx,+4mod9=7-1+4mod9 =11mod9 =2,
X =Txs+4mod9=7-2+4mod9 =18 mod 9 = 0,
X7 =Txg+4mod9=7-0+4mod 9= 4mod?9 =4,
xg=Tx;+4mod9=7-4+4mod9 =32mod9 =5,
Xg=Txg+4mod9=7-5+4mod9 =39 mod9 = 3.
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Applications (4/4)
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m is the number Classical Cryptography
of elements in the

3' Cryptography language used.
f(p) = (p + k) mod m. ) = (p — k) mod m.

Encryption k is called a key Decryption

Solution: To encrypt the message “STOP GLOBAL WARMING” we first translate each letter
to the corresponding element of Z,,. This produces the string

1819 14 15 611141011 22017128 13 6.
We now apply the shift f(p) = (p + 11) mod 26 to each number in this string. We obtain

34250 172225121122 7112231924 17.

Translating this last string back to letters, we obtain the ciphertext “DEZA RWZMLW HLCX-
TYR” <
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D Video Lectures
e i et 3

All Lectures: https://www.youtube.com/playlist?list=PLxlvc-MG0sBgZIMVYODEUHJmiUquCiwz

| ectures #5: https://www.youtube.com/watch?v=0-zlpSW3oSUalist=PLxlve-
MGOsBgZIMVYOOEtUH mfUqulijwzGindex=3l

https://www.youtube.com/watch?v=3IXnibINWdoalist=PLxlvc- Up to time 00:21:34
MGOsBgZIMVYDOEtUHmfllquCjwzGindex=32

https://www.youtube.com/watch?v=IAZzb2FAVc4Glist=PlLxlvc-
MGOsBgZIMVYDOEtUH mflquCjwzaindex=34
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https://www.youtube.com/playlist?list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz
https://www.youtube.com/watch?v=1AZzb2FAVc4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=34
https://www.youtube.com/watch?v=1AZzb2FAVc4&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=34
https://www.youtube.com/watch?v=Q-zLpSW3oSU&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=31
https://www.youtube.com/watch?v=Q-zLpSW3oSU&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=31
https://www.youtube.com/watch?v=3IXniblNWdo&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=32
https://www.youtube.com/watch?v=3IXniblNWdo&list=PLxIvc-MGOs6gZlMVYOOEtUHJmfUquCjwz&index=32

Thank You

Dr. Ahwed Hagag
ahagag(@fci.bu.edu.eg
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